Sumário

Representando um jogo com lances simultâneos

Exemplo: Pedra, papel, tesoura

		Jogador 2					
		Pedra Papel		Teso	ura		
	Pedra	0,	0	-1,	1	1, -	-1
Jogador 1	Papel	1, -	-1	0,	0	-1,	1
	Tesoura	-1,	1	1, -	-1	0,	0

Jogos de soma zero

Quando em todas as células da representação matricial do jogo, a soma dos payoffs é constante, diz-se que trata-se de um jogo de soma zero, ou de soma constante.

Representação resumida de um jogo de soma zero

Exemplo: Pedra, papel, tesoura

		Jogador 2			
		Pedra Papel Tesoura			
	Pedra	0	-1	1	
Jogador 1	Papel	1	0	-1	
	Tesoura	-1	1	0	

4 / 22

Equilíbrio de Nash

Um equilíbrio de Nash é uma combinação de estratégias tal que, para cada jogador, sua estratégia é a melhor possível dada as estratégias adotadas pelos outros jogadores.

Estratégias dominantes: Definição

Estratégias Dominantes

Diz-se que um jogador possui uma estratégia estritamente dominante em um jogo quando essa estratégia gera um resultado estritamente melhor do que qualquer outra estratégia independentemente das estratégias adotadas pelos outros jogadores.

Estratégias fracamente dominantes

Uma estratégia é fracamente dominante caso ela nunca seja pior do que qualquer outra estratégia independentemente das estratégias adotadas pelos outros jogadores e seja melhor do que qualquer outra estratégia para, ao menos, uma combinação de estratégias adotadas pelos outros jogadores.

Equilíbrio com estratégias dominantes

Caso todos jogadores possuam estratégias dominantes, então a combinação dessas estratégias é chamada de um equilíbrio de Nash também conhecido como **equilíbrio com estratégias dominantes**.

Jogador 2

Esquerda Direita

Jogador 1

Acima Abaixo

4, 4	1, 0
0, 1	0,0

8 / 22

		Jogador 2		
		Esquerda	Direita	
Jogador 1	Acima	4, 4	1,0	
Jogadoi I	Abaixo	0, 1	0,0	

• Acima é estratégia dominante para o jogador 1.

8 / 22

- Acima é estratégia dominante para o jogador 1.
- Esquerda é estratégia dominante para o jogador 2.

Jogador 2 Esquerda Direita Jogador 1 4, 4 1, 0 Abaixo 0, 1 0, 0

- Acima é estratégia dominante para o jogador 1.
- Esquerda é estratégia dominante para o jogador 2.
- Acima, Esquerda é um equilíbrio de Nash e um equilíbrio com estratégias dominantes.

O Dilema dos Prisioneiros

Dois parceiros de um crime são interrogados simultaneamente por agentes policiais. A cada um dos criminosos é contada a seguinte história: as provas que temos contra vocês nos permitem impor uma pena de 3 anos de prisão para cada um. Todavia, nós sabemos (mas não temos provas) que vocês participaram de um seguestro. Se você confessar a participação nesse crime, nós podemos atenuar sua pena da seguinte maneira. Se você confessar o seguestro e seu companheiro não confessar, sua pena será de apenas um ano e seu companheiro terá pena de 9 anos. A recíproca é verdadeira. Se ambos confessarem, todavia, não será possível atenuar tanto a pena e cada um de vocês será condenado a 5 anos de cadeia.

O Dilema dos Prisioneiros: Representação estratégica

Pris. 2 Confessa Não conf. Pris. 1 Confessa -5, -5 -1, -9N. Confessa -9, -1 -3, -3

- Confessar é estratégia dominante para ambos prisioneiros.
- No equilíbrio em estratégias dominantes ambos confessam.

Marinha Japonesa

Norte Sul
Norte 2 2
Sul 1 3

Marinha Japonesa

Norte Sul
Norte 2 2
Sul 1 3

Marinha Japonesa

Norte Sul
Norte 2 2
Sul 1 3

Marinha Japonesa

 Norte
 Sul

 Norte
 2
 2

 Sul
 1
 3

Marinha Japonesa

 Norte
 Sul

 Norte
 2
 2

 Sul
 1
 3

Marinha Japonesa

	Norte	Sul
Norte	2	2
Sul	1	3

Força Aer. Americana

Solução

- A marinha japonesa deve escolher norte.
- Sabendo disso, a força aérea americana escolherá norte.

Estratégias dominadas

Estratégia dominada

Dizemos que uma estratégia A é **estritamente dominada** pela estratégia B caso B gere melhor resultado do que A independentemente das estratégias adotadas pelos outros jogadores. Caso B nunca seja pior do que A e, para alguma combinação de estratégias adotadas pelos outros jogadores, B seja melhor do que A, dizemos que A é **fracamente dominanda** por B.

Equilíbrio por eliminação recursiva de estratégias dominadas

Como os jogadores não têm razão para jogar estratégias dominadas, por vezes, o equilíbrio de Nash pode ser encontrado eliminando-se recursivamente estratégias dominadas,

Exemplo: guerra de preços entre as pizzarias de um bairro

Lucros segundo política de preços

		Dom Pepe		
		Alto Médio Baixo		
	Alto	60,60	36,70	36, 35
Zia Peppa	Médio	70,36	50,50	30, 35
	Baixo	35, 36	35, 30	25, 25

Estratégias de minimax

Definição

Em um jodo de soma zero, uma **estratégia de minimax** é uma estratégia que torna máximo o pior resultado do jogador ou, equivalentemente, que torna mínimo o melhor resultado de seu oponente.

Equilíbrio com estratégias minimax

Se, em um jogo de soma zero, os dois jogadores jogam estratégias de minimax, então a combinação dessas estratégias é um equilíbrio de Nash.

Jogador 1

	Jogador 2				
	1	Ш	Ш		
a	2	5	13		
b	6	5.6	10.5		
C	6	4.5	1		
d	10	3	-2		

min = 2

Jogador 1

		Jogador 2	
	1	Ш	Ш
a	2	5	13
b	6	5.6	10.5
C	6	4.5	1
d	10	3	-2

min = 2min = 5.6

Jogador 1

		Jogador 2	
	1	II .	Ш
a	2	5	13
b	6	5.6	10.5
C	6	4.5	1
d	10	3	-2

min = 2min = 5.6

min = 1

Jogador 1

	1	Ш	Ш	
a	2	5	13	min = 2
b	6	5.6	10.5	min = 5.6
C	6	4.5	1	min = 1
d	10	3	-2	min = -2

Jogador 2 Ш 5 13 min = 2a 5.6 10.5 b 6 min = 5.6Jogador 1 6 4.5 min = 1C d 3 -2 10 min = -2max = 10

Jogador 2 Ш 5 13 a min = 25.6 10.5 6 min = 5.6b Jogador 1 6 4.5 min = 1C 3 -2 d 10 min = -2max = 10max = 5.6

Jogador 2 Ш 5 13 a min = 210.5 6 5.6 min = 5.6b Jogador 1 6 4.5 min = 1C -2 d 10 3 min = -2max = 10max = 5.6max = 13

16 / 22

Jogador 2 ш 5 13 a min = 25.6 10.5 b 6 min = 5.6Jogador 1 6 4.5 min = 1C -2 d 10 3 min = -2max = 10max = 5.6max = 13Equilíbrio de minimax é (b,II)

16 / 22

Inspeção célula por célula

Exemplo: guerra de preços entre as pizzarias de um bairro

Lucros segundo política de preços

		Dom Pepe			
		Alto Médio Baixo			
	Alto	60,60	36,70	36, 35	
Zia Peppa	Médio	70,36	50,50	30, 35	
	Baixo	35, 36	35, 30	25, 25	

Escolha de variáveis contínuas

Exemplo: o jogo da metade da média

Dois jogadores devem escolher simultaneamente um número real maior ou igual a zero e menor ou igual a 100. Se o número escolhido por um jogador for igual à metade da média entre os dois números escolhidos, esse jogador ganhará um prêmio de R\$5.000,00.

Solução

Sejam x_1 o número escolhido pelo jogador 1 e x_2 o número escolhido pelo jogador 2. Para que x_1 seja a melhor escolha do jogador 1 dado x_2 é preciso que

Solução

Sejam x_1 o número escolhido pelo jogador 1 e x_2 o número escolhido pelo jogador 2. Para que x_1 seja a melhor escolha do jogador 1 dado x_2 é preciso que

$$x_1 = \frac{(x_1 + x_2)/2}{2}$$

Solução

Sejam x_1 o número escolhido pelo jogador 1 e x_2 o número escolhido pelo jogador 2. Para que x_1 seja a melhor escolha do jogador 1 dado x_2 é preciso que

$$x_1 = \frac{(x_1 + x_2)/2}{2} \Rightarrow x_1 = \frac{x_2}{3}.$$
 (1)

Solução

Sejam x_1 o número escolhido pelo jogador 1 e x_2 o número escolhido pelo jogador 2. Para que x_1 seja a melhor escolha do jogador 1 dado x_2 é preciso que

$$x_1 = \frac{(x_1 + x_2)/2}{2} \Rightarrow x_1 = \frac{x_2}{3}.$$
 (1)

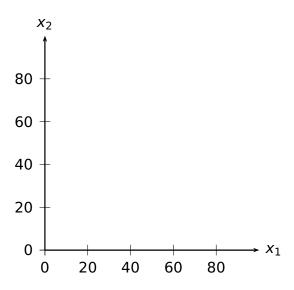
Para que x_2 seja a melhor escolha do jogador 2 dado x_1 é preciso que

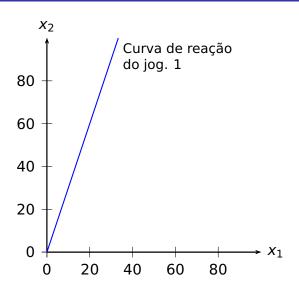
$$x_2 = \frac{(x_1 + x_2)/2}{2} \Rightarrow x_2 = \frac{x_1}{3}.$$
 (2)

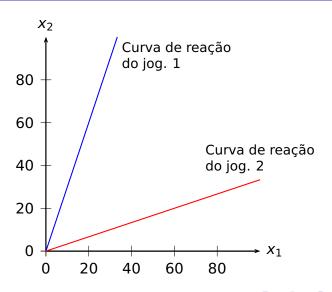
Solução

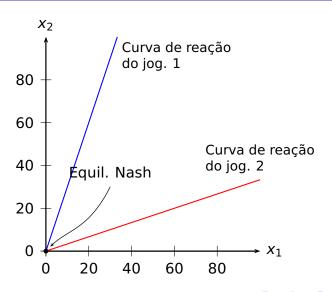
Sejam x_1 o número escolhido pelo jogador 1 e x_2 o número escolhido pelo jogador 2. Para que x_1 seja a melhor escolha do jogador 1 dado x_2 é preciso que

$$x_1 = \frac{(x_1 + x_2)/2}{2} \Rightarrow x_1 = \frac{x_2}{3}.$$
 (1)


Para que x_2 seja a melhor escolha do jogador 2 dado x_1 é preciso que


$$x_2 = \frac{(x_1 + x_2)/2}{2} \Rightarrow x_2 = \frac{x_1}{3}.$$
 (2)


O equilíbrio de Nash ocorre quando (1) e (2) ocorrem simultaneamente, ou seja quando


$$x_1 = x_2 = 0$$

